Data-Dependent Stability of Stochastic Gradient Descent

نویسندگان

  • Ilja Kuzborskij
  • Christoph H. Lampert
چکیده

We establish a data-dependent notion of algorithmic stability for Stochastic Gradient Descent (SGD) and employ it to develop novel generalization bounds. This is in contrast to previous distribution-free algorithmic stability results for SGD which depend on the worstcase constants. By virtue of the data-dependent argument, our bounds provide new insights into learning with SGD on convex and non-convex problems. In the convex case, we show that the bound on the generalization error is multiplicative in the risk at the initialization point. In the non-convex case, we prove that the expected curvature of the objective function around the initialization point has crucial influence on the generalization error. In both cases, our results suggest a simple data-driven strategy to stabilize SGD by pre-screening its initialization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Asymptotic and finite-sample properties of estimators based on stochastic gradients∗

Stochastic gradient descent procedures have gained popularity for parameter estimation from large data sets. However, their statistical properties are not well understood, in theory. And in practice, avoiding numerical instability requires careful tuning of key parameters. Here, we introduce implicit stochastic gradient descent procedures, which involve parameter updates that are implicitly def...

متن کامل

Conjugate gradient neural network in prediction of clay behavior and parameters sensitivities

The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...

متن کامل

A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent

We analyze the generalization error of randomized learning algorithms—focusingon stochastic gradient descent (SGD)—using a novel combination of PAC-Bayesand algorithmic stability. Importantly, our risk bounds hold for all posterior dis-tributions on the algorithm’s random hyperparameters, including distributions thatdepend on the training data. This inspires an adaptive sampling...

متن کامل

Stochastic Gradient Descent Methods for Estimation with Large Data Sets

We develop methods for parameter estimation in settings with large-scale data sets, where traditional methods are no longer tenable. Our methods rely on stochastic approximations, which are computationally efficient as they maintain one iterate as a parameter estimate, and successively update that iterate based on a single data point. When the update is based on a noisy gradient, the stochastic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.01678  شماره 

صفحات  -

تاریخ انتشار 2017